
HANNAH THOMPSON
SCENTRE GROUP

@HANNAHCANCODE

REACT NATIVE

Used javascript?

Used React?

I’m going to be talking about React Native, which is a framework that allows you to make mobile apps, using what is essentially React. Afterwards you should be able to
dive into the docs with more confidence and be able to make your own apps.

I’m going to be focussing mainly on iOS, because that’s where my experience has been, but a lot of what I say will also be applicable to Android.

Web dev not iOS dev

nb. license agnostic

IT’S NATIVE

JAVASCRIPT CORE

NOT IN A BROWSER

Firstly, React Native is… more native than most javascript mobile frameworks. React Native uses Javascript Core, which is iOS uses for javascript in your mobile
browsers. Javascript Core is accessible outside of the browser, however, and this is how React Native uses it.

Other frameworks like Ionic and Cordova use a native container with a WebView to render Javascript - so essentially you’re just writing a webpage in a native container.

IT’S NATIVE

NATIVE UI

NOT HTML

So because we’re not in the browser, React Native access Native UI components. Once again, something like Ionic uses normally HTML and CSS for UI.

WHY?

YOU’RE A JAVASCRIPT DEVELOPER

So why would you want to use React Native and javascript to develop a mobile app?

Well…

WHY?

ANDROID AND IOS

WHY?

EXISTING REACT APP

WHY?

HOT RELOADING WHOA

WHY?

YOU DON’T PLAN ON SUING FACEBOOK…
YET

REACT VS. REACT NATIVE

div

p

View

Text

GETTING SET UP

$ brew install node

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

$ brew install node
$ brew install watchman

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

$ brew install node
$ brew install watchman

$ npm install -g react-native-cli

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

$ brew install node
$ brew install watchman

$ npm install -g react-native-cli

$ react-native init MyNewApp

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

$ brew install node
$ brew install watchman

$ npm install -g react-native-cli

$ react-native init MyNewApp

$ cd MyNewApp

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

$ brew install node
$ brew install watchman

$ npm install -g react-native-cli

$ react-native init MyNewApp

$ cd MyNewApp

$ react-native run-ios

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

$ brew install node
$ brew install watchman

$ npm install -g react-native-cli

$ react-native init MyNewApp

$ cd MyNewApp

$ react-native run-ios

Getting set up is easy on a mac, you just need homebrew installed.

 
First we’ll install node, for running react-native, and watchman, which will watch and reload our code when things change. This allows us to do hot reloading so we don’t
have to rebuild our app every time we edit our code.

Next, using npm or yarn, we do a global install of the react native command line interface and use that to initialise a new react native app. Finally, we’ll move into our app
and get it running in the iOS simulator using the run-ios command.

GETTING SET UP

CREATE-REACT-NATIVE-APP + EXPO

Now, if you want an easier way to check out React Native or you’re not quite ready to dive into XCode…

GETTING SET UP

Back to our app, and you’ll notice that there are two index files in the directory. This is where the entry points to our code are, one for android and one for iOS. Beyond
that you can share components between these.

GETTING SET UP

Now if you’re familiar with node development, you’ll recognise package.json. If you’re not, package.json is just a json file that lists all the things npm needs to know to
download your dependencies and run your packages.

Taking a quick look inside package.json you can see it’s bringing in some react, some react-native, and some babel stuff to translate our fancy javascript back to vanilla
javascript. The great thing about React Native is that you have a community creating packages for native libraries, UI and logic. When you install them with npm they’ll
turn up here.

GETTING SET UP
// package.json

{
 "name": "MyNewApp",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "babel-preset-react-native": "2.1.0",
 "react": "16.0.0-alpha.12",
 "react-native": "0.47.1"
 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "jest": "20.0.4",
 "react-test-renderer": "16.0.0-alpha.12"
 },
 "jest": {
 "preset": "react-native"
 }
}

Now if you’re familiar with node development, you’ll recognise package.json. If you’re not, package.json is just a json file that lists all the things npm needs to know to
download your dependencies and run your packages.

Taking a quick look inside package.json you can see it’s bringing in some react, some react-native, and some babel stuff to translate our fancy javascript back to vanilla
javascript. The great thing about React Native is that you have a community creating packages for native libraries, UI and logic. When you install them with npm they’ll
turn up here.

IT’S JAVASCRIPT

Amongst other things that react-native init has created for us, there’s an index.ios.js file, which is a basic javascript class. This is our entry point into the app. If we look
into the file, first We import some stuff from react and react native…

IT’S JAVASCRIPT

// index.ios.js

Amongst other things that react-native init has created for us, there’s an index.ios.js file, which is a basic javascript class. This is our entry point into the app. If we look
into the file, first We import some stuff from react and react native…

IT’S JAVASCRIPT

// index.ios.js

import React, { Component } from 'react'

Amongst other things that react-native init has created for us, there’s an index.ios.js file, which is a basic javascript class. This is our entry point into the app. If we look
into the file, first We import some stuff from react and react native…

IT’S JAVASCRIPT

// index.ios.js

import React, { Component } from 'react'

import {  
 AppRegistry,  
 StyleSheet,  
 Text,  
 View 
} from 'react-native'

Amongst other things that react-native init has created for us, there’s an index.ios.js file, which is a basic javascript class. This is our entry point into the app. If we look
into the file, first We import some stuff from react and react native…

IT’S JAVASCRIPT

// index.ios.js

import React, { Component } from 'react'

import {  
 AppRegistry,  
 StyleSheet,  
 Text,  
 View 
} from 'react-native'

Amongst other things that react-native init has created for us, there’s an index.ios.js file, which is a basic javascript class. This is our entry point into the app. If we look
into the file, first We import some stuff from react and react native…

IT’S JUST REACT

We set up a class that is exported as MyNewApp,

 
Create a render method

And then in the render method we put all our UI.

If you’re familiar with React, you’ll notice that it’s really just React. So there’s not a huge jump!

export default class MyNewApp extends Component {
 render() {
 return (

 // react stuff goes here

);
 }
}

IT’S JUST REACT

We set up a class that is exported as MyNewApp,

 
Create a render method

And then in the render method we put all our UI.

If you’re familiar with React, you’ll notice that it’s really just React. So there’s not a huge jump!

export default class MyNewApp extends Component {
 render() {
 return (

 // react stuff goes here

);
 }
}

export default class MyNewApp extends Component {
 render() {
 return (

 // react stuff goes here

);
 }
}

IT’S JUST REACT

We set up a class that is exported as MyNewApp,

 
Create a render method

And then in the render method we put all our UI.

If you’re familiar with React, you’ll notice that it’s really just React. So there’s not a huge jump!

export default class MyNewApp extends Component {
 render() {
 return (

 // react stuff goes here

);
 }
}

export default class MyNewApp extends Component {
 render() {
 return (

 // react stuff goes here

);
 }
}

IT’S JUST REACT

export default class MyNewApp extends Component {
 render() {
 return (

 // stuff to display goes here

)
 }
}

We set up a class that is exported as MyNewApp,

 
Create a render method

And then in the render method we put all our UI.

If you’re familiar with React, you’ll notice that it’s really just React. So there’s not a huge jump!

COMPONENTS

COMPONENTS

COMPONENTS

Text

COMPONENTS

Text

Text

COMPONENTS

Text

Text

Text

COMPONENTS

Text

Text

Text

View

REGISTER ENTRY POINT

Finally, we register the entry point component of our app, so the react-native package knows where to build from.

AppRegistry.registerComponent(
 'MyNewApp', () => MyNewApp
)

REGISTER ENTRY POINT

Finally, we register the entry point component of our app, so the react-native package knows where to build from.

AppRegistry.registerComponent(
 'MyNewApp', () => MyNewApp
)

REGISTER ENTRY POINT

Finally, we register the entry point component of our app, so the react-native package knows where to build from.

XCODE

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

CAMERA

CAMERA ROLL

NOTIFICATIONS

GEOLOCATION

ETC.

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

$ npm install <library> —-save
$ react-native link

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

$ npm install <library> —-save
$ react-native link

MAGIC

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

node_modules/react_native/Libraries/CameraRoll

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

NATIVE LIBRARIES

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

API

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

API

import { CameraRoll } from 'react-native'

CameraRoll.getPhotos(params)
 .then((data) => dealWithIt(data))

If we navigate into our app, and then into the ios folder, we find an xcodeproj folder.

JSX

Inside the render method we use JSX, which looks like this. JSX allows us to use XML type markup within javascript.

Here is what the View component that we saw in the simulator looks like in JSX.

Inside the View component we build in the Text components.

We can use Javascript inside the JSX by escaping with the curly braces. Here we're accessing a javascript object called styles, and passing it into the style parameter of
the component.

JSX

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

Inside the render method we use JSX, which looks like this. JSX allows us to use XML type markup within javascript.

Here is what the View component that we saw in the simulator looks like in JSX.

Inside the View component we build in the Text components.

We can use Javascript inside the JSX by escaping with the curly braces. Here we're accessing a javascript object called styles, and passing it into the style parameter of
the component.

JSX

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}>  
 Welcome to React Native! 
 </Text>

Inside the render method we use JSX, which looks like this. JSX allows us to use XML type markup within javascript.

Here is what the View component that we saw in the simulator looks like in JSX.

Inside the View component we build in the Text components.

We can use Javascript inside the JSX by escaping with the curly braces. Here we're accessing a javascript object called styles, and passing it into the style parameter of
the component.

JSX

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}>  
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}>  
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

Inside the render method we use JSX, which looks like this. JSX allows us to use XML type markup within javascript.

Here is what the View component that we saw in the simulator looks like in JSX.

Inside the View component we build in the Text components.

We can use Javascript inside the JSX by escaping with the curly braces. Here we're accessing a javascript object called styles, and passing it into the style parameter of
the component.

JSX

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}>  
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}>  
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}>  
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}>  
 Everything is a component 
 </Text>

</View>

Inside the render method we use JSX, which looks like this. JSX allows us to use XML type markup within javascript.

Here is what the View component that we saw in the simulator looks like in JSX.

Inside the View component we build in the Text components.

We can use Javascript inside the JSX by escaping with the curly braces. Here we're accessing a javascript object called styles, and passing it into the style parameter of
the component.

JSX

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}>  
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}>  
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}>  
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}>  
 Everything is a component 
 </Text>

</View>

<View style={styles.container}>

 <Text style={styles.content}> 
 Welcome to React Native! 
 </Text>

 <Text style={styles.content}> 
 Everything is a component 
 </Text>

</View>

Inside the render method we use JSX, which looks like this. JSX allows us to use XML type markup within javascript.

Here is what the View component that we saw in the simulator looks like in JSX.

Inside the View component we build in the Text components.

We can use Javascript inside the JSX by escaping with the curly braces. Here we're accessing a javascript object called styles, and passing it into the style parameter of
the component.

STYLES

In React Native you have no choice but to write your styles within your javascript, because your styles ARE javascript. React Native styles are css LIKE, but aren’t exactly
the same as CSS. We use the StyleSheet class to make a new stylesheet object, and assign it to a constant that can then be given to our components. We then add in
some style classes within our style object. These can be assigned to components wherever we import our stylesheet.

CamelCase

Most components have a style prop to feed your styles down to.

STYLES

const styles = StyleSheet.create({

In React Native you have no choice but to write your styles within your javascript, because your styles ARE javascript. React Native styles are css LIKE, but aren’t exactly
the same as CSS. We use the StyleSheet class to make a new stylesheet object, and assign it to a constant that can then be given to our components. We then add in
some style classes within our style object. These can be assigned to components wherever we import our stylesheet.

CamelCase

Most components have a style prop to feed your styles down to.

STYLES

const styles = StyleSheet.create({
 container: {  
 flex: 1,  
 justifyContent: 'center',  
 alignItems: 'center',  
 },

In React Native you have no choice but to write your styles within your javascript, because your styles ARE javascript. React Native styles are css LIKE, but aren’t exactly
the same as CSS. We use the StyleSheet class to make a new stylesheet object, and assign it to a constant that can then be given to our components. We then add in
some style classes within our style object. These can be assigned to components wherever we import our stylesheet.

CamelCase

Most components have a style prop to feed your styles down to.

STYLES

const styles = StyleSheet.create({
 container: {  
 flex: 1,  
 justifyContent: 'center',  
 alignItems: 'center',  
 },
 content: { 
 …  
 }

In React Native you have no choice but to write your styles within your javascript, because your styles ARE javascript. React Native styles are css LIKE, but aren’t exactly
the same as CSS. We use the StyleSheet class to make a new stylesheet object, and assign it to a constant that can then be given to our components. We then add in
some style classes within our style object. These can be assigned to components wherever we import our stylesheet.

CamelCase

Most components have a style prop to feed your styles down to.

STYLES

const styles = StyleSheet.create({
 container: {  
 flex: 1,  
 justifyContent: 'center',  
 alignItems: 'center',  
 },
 content: { 
 …  
 }
})

In React Native you have no choice but to write your styles within your javascript, because your styles ARE javascript. React Native styles are css LIKE, but aren’t exactly
the same as CSS. We use the StyleSheet class to make a new stylesheet object, and assign it to a constant that can then be given to our components. We then add in
some style classes within our style object. These can be assigned to components wherever we import our stylesheet.

CamelCase

Most components have a style prop to feed your styles down to.

FLEXBOX

render() {
 return (
 <View>
 <Dog />
 </View>
)
}

Now we can import Dog.js into our parent component, and call it using JSX. We can call it as many times as we like.

FLEXBOX

render() {
 return (
 <View>
 <Dog />
 <Dog />
 <Dog />
 </View>
)
}

Now we can import Dog.js into our parent component, and call it using JSX. We can call it as many times as we like.

DEBUGGING

If, after all my great tips, you still find yourself confronted with the RED SCREEN OF DEATH, you can debug in the browser using Dev Tools to access the console.

DEBUGGING

If, after all my great tips, you still find yourself confronted with the RED SCREEN OF DEATH, you can debug in the browser using Dev Tools to access the console.

DEBUGGING

If, after all my great tips, you still find yourself confronted with the RED SCREEN OF DEATH, you can debug in the browser using Dev Tools to access the console.

DEBUGGING

[object Object] ?!

If, after all my great tips, you still find yourself confronted with the RED SCREEN OF DEATH, you can debug in the browser using Dev Tools to access the console.

A NOTE ON DEBUGGING

If, after all my great tips, you still find yourself confronted with the RED SCREEN OF DEATH, you can debug in the browser using Dev Tools to access the console.

A NOTE ON DEBUGGING

V8 VS JAVASCRIPT CORE

If, after all my great tips, you still find yourself confronted with the RED SCREEN OF DEATH, you can debug in the browser using Dev Tools to access the console.

THANKS!
!

QUESTIONS?
"

